
© 2014 The MITRE Corporation. All rights reserved.

Approved for Public Release,14-2221

C o r e y K a l l e n b e r g

X e n o K o va h

J o h n B u t t e rw o r t h

S a m C o r n w e l l

Extreme Privilege Escalation
on Windows 8/UEFI Systems

@ c o r e yk a l

@ x e n o k o va h

@ jw b u t t e rw o r t h 3

@ s s c 0 r nw e l l

| 2 |

Outline

ÁThe agony of ring 3

ÁEscaping to the deepest, darkest, depths of the system where

few mortals dare tread

Á2 new take-complete-control-of-the-system-and-defeat-all-

security BIOS exploits: The King's Gambit, The Queen's Gambit

ÁDisclosure timeline and vendor response

ÁThe Watcher appears!

ÁQuestioning your assumptions (and assessing your risk) with

Copernicus

ÁConclusion

© 2014 The MITRE Corporation. All rights reserved.

| 3 |

Goal: achieve 11/10 on Snare awesomeness scale.

| 4 |

Attack Model (1 of 2)

ÁAn attacker has gained administrator access on a victim

Windows 8 machine

ÁBut they are still constrained by the limits of ring 3

© 2014 The MITRE Corporation. All rights reserved.

| 5 |

Attack Model (2 of 2)

ÁAttackers always want

ïMore Power

ïMore Persistence

ïMore Stealth

© 2014 The MITRE Corporation. All rights reserved.

| 6 |

Typical Post-Exploitation Privilege Escalation

ÁStarting with x64 Windows vista, kernel drivers must be signed and contain
an Authenticode certificate

ÁIn a typical post-exploitation privilege escalation, the attacker wants to
bypass the signed driver requirement to install a kernel level rootkit

ÁVarious methods to achieve this are possible, including:

ïExploit existing kernel drivers

ïInstall a legitimate (signed), but vulnerable, driver and exploit it

ÁThis style of privilege escalation has been well explored by other
researchers such as [6][7].

ÁThere are other, more extreme, lands the attacker may wish to explore

© 2014 The MITRE Corporation. All rights reserved.

| 7 |

Other Escalation Options (1 of 2)

ÁThere are other more interesting post-exploitation options an
attacker may consider:

ïBootkit the system

ïInstall SMM rootkit

ïInstall BIOS rootkit

© 2014 The MITRE Corporation. All rights reserved.

| 8 |

Other Escalation Options (2 of 2)

ÁModern platforms contain protections against these more exotic
post-exploitation privilege-escalations

ïBootkit the system (Prevented by Secure Boot)

ïInstall SMM rootkit (SMM is locked on modern systems)

ïInstall BIOS rootkit (SPI Flash protected by lockdown mechanisms)

© 2014 The MITRE Corporation. All rights reserved.

| 9 |

Extreme Privilege Escalation (1 of 2)

ÁThis talk presents extreme privilege escalation

ïAdministrator userland process exploits the platform firmware

(UEFI)

ïExploit achieved by means of a new API introduced in Windows 8

© 2014 The MITRE Corporation. All rights reserved.

| 10 |

Extreme Privilege Escalation (2 of 2)

ÁOnce the attacker has arbitrary code execution in the context of the
platform firmware, he is able to:

ïControl other "rings" on the platform (SMM, Ring 0)

ïPersist beyond operating system re-installations

ïPermanently "brick" the victim computer

© 2014 The MITRE Corporation. All rights reserved.

| 11 |

Target Of Attack

ÁModern Windows 8 systems ship with UEFI firmware

ÁUEFI is designed to replace conventional BIOS and provides a

well defined interface to the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 12 |

Obligatory UEFI Diagram

© 2014 The MITRE Corporation. All rights reserved.

BREAKING IN EARLIER == MORE PRIVILEGED

| 13 |

Windows 8 API

ÁWindows 8 has introduced an API that allows a privileged

userland process to interface with a subset of the UEFI interface

© 2014 The MITRE Corporation. All rights reserved.

| 14 |

EFI Variable Creation Flow

ÁCertain EFI variables can be created/modified/deleted by the
operating system

ïFor example, variables that control the boot order and platform
language

ÁThe firmware can also use EFI variables to communicate
information to the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 15 |

EFI Variable Consumption

ÁThe UEFI variable interface is a conduit by which a less privileged
entity (admin Ring 3) can produce data for a more complicated
entity (the firmware) to consume

ÁThis is roughly similar to environment variable parsing attack
surface on *nix systems

© 2014 The MITRE Corporation. All rights reserved.

| 16 |

Previous EFI Variable Issues (1 of 2)

ÁWeôve already co-discovered[13] with Intel some vulnerabilities

associated with EFI Variables that allowed bypassing secure

boot and/or bricking the platform

© 2014 The MITRE Corporation. All rights reserved.

| 17 |

Previous EFI Variable Issues (2 of 2)

ÁHowever, VU #758382 was leveraging a proprietary Independent
BIOS Vendor (IBV) implementation mistake, it would be more
devastating if an attacker found a variable vulnerability more
generic to UEFI

© 2014 The MITRE Corporation. All rights reserved.

| 18 |

OEMs

(Original

equipment

manufacturers)

UEFI Vulnerability Proliferation

ÁIf an attacker finds a vulnerability in the UEFI "reference

implementation," its proliferation across IBVs and OEMs would

potentially be wide spread.

© 2014 The MITRE Corporation. All rights reserved.

Notional, not literal, representation of

the flow of code between vendors

UEFI

(Unified

Extensible

Firmware

Interface)

IBVs

(Independent

BIOS Vendors)

| 19 |

Auditing UEFI

ÁUEFI reference implementation is open source, making it easy to audit

ÁLet the games begin:

ï Svn checkout https://svn.code.sf.net/p/edk2/code/trunk/edk2/

http://tianocore.sourceforge.net/wiki/Welcome

© 2014 The MITRE Corporation. All rights reserved.

| 20 |

Where to Start Looking for Problems?

ÁAlways start with wherever there is attacker-controlled input

ïMany of the UEFI variables are writeable by the OS, and are thus

ñattacker controlledò

ÁWe had good success last year exploiting Dell systems by

passing an specially-crafted fake BIOS updateé

ÁThe UEFI spec outlines a "Capsule update" mechanism for

firmware updates

ïItôs not directly callable by ring 3 codeé

ïBut it can be initiated by the creation of a special EFI Variable!

ïWe considered this to be a good target

© 2014 The MITRE Corporation. All rights reserved.

| 21 |

Capsule Scatter Write

ÁTo begin the process of sending a Capsule update for

processing, the operating system takes a firmware capsule and

fragments it across the address space

© 2014 The MITRE Corporation. All rights reserved.

| 22 |

Capsule Processing Initiation

ÁThe operating system creates an EFI variable that describes the
location of the fragmented firmware capsule

ÁA "warm reset" then occurs to transition control back to the
firmware

© 2014 The MITRE Corporation. All rights reserved.

| 23 |

Capsule Coalescing

ÁThe UEFI code "coalesces" the firmware capsule back into its

original form.
© 2014 The MITRE Corporation. All rights reserved.

| 24 |

Capsule Verification

ÁUEFI parses the envelope of the firmware capsule and verifies

that it is signed by the OEM

© 2014 The MITRE Corporation. All rights reserved.

| 25 |

Capsule Consumption

ÁContents of the capsule are then consumedé.

ïFlash contents to the SPI flash

ïRun malware detection independent of the operating system

ïEtcé

© 2014 The MITRE Corporation. All rights reserved.

| 26 |

Opportunities For Vulnerabilities

ÁThere are 3 main opportunities for memory corruption

vulnerabilities in the firmware capsule processing code

1. The coalescing phase

2. Parsing of the capsule envelope

3. Parsing of unsigned content within the capsule

ÁOur audit of the UEFI capsule processing code yielded multiple

vulnerabilities in the coalescing and envelope parsing code

ï The first "BIOS reflash" exploit was presented by Wojtczuk and

Tereshkin. They found it by reading the UEFI code which handled

BMP processing and exploiting an unsigned splash screen image

embedded in a firmware[1]

© 2014 The MITRE Corporation. All rights reserved.

| 27 |

Bugs Galore

ÁWe spent ~1 week looking at the UEFI reference implementation and
discovered vulnerabilities in the capsule processing code

ïWe found 2 exploitable vulnerabilities code-named after chess moves. King's
Gambit is in DXE phase, Queen's Gambit in PEI phase.

ÁThe vulnerabilities allow an attacker to get code execution in the context of
an almost entirely unlocked platform

 © 2014 The MITRE Corporation. All rights reserved.

