
Intel ME: Two Years Later

Igor Skochinsky
Hex-Rays

Breakpoint 2014
Melbourne

2(c) 2014 Igor Skochinsky

OutlineOutline

Recap (from Breakpoint 2012)
New discoveries
Attacking the ME
ME variations
Dynamic Application Loader
Tools/Demo
Results
Future work

3(c) 2014 Igor Skochinsky

About myself

Was interested in software reverse engineering for around
15 years
Longtime IDA user
Working for Hex-Rays since 2008
Helping develop IDA and the decompiler (also doing
technical support, trainings etc.)
Have an interest in embedded hacking (e.g. Kindle, Sony
Reader)
Recently focusing on low-level PC research (BIOS, UEFI,
ME)
Moderator of reddit.com/r/ReverseEngineering/ and
reverseengineering.stackexchange.com

http://www.reddit.com/r/ReverseEngineering/
http://reverseengineering.stackexchange.com/

4(c) 2014 Igor Skochinsky

ME: Recap

Management Engine (or Manageability Engine) is a
dedicated microcontroller on all recent Intel platforms
In first versions it was included in the network card, later
moved into the chipset (GMCH, then PCH, then MCH)
Shares flash with the BIOS but is completely independent
from the main CPU
Can be active even when the system is hibernating or
turned off (but connected to mains)
Has a dedicated connection to the network interface; can
intercept or send any data without the main CPU's
knowledge

5(c) 2014 Igor Skochinsky

Recap: high-level overview

Credit: Intel 2009

6(c) 2014 Igor Skochinsky

Recap: communication

Communicating with the Host OS and network

HECI (MEI): Host Embedded Controller Interface;
communication using a PCI memory-mapped area
Network protocol is SOAP based; can be plain HTTP or
HTTPS

7(c) 2014 Igor Skochinsky

Recap: ME components

Some of the ME components/features

Active Management Technology (AMT): remote
configuration, administration, provisioning, repair, KVM
System Defense: lowest-level firewall/packet filter with
customizable rules
IDE Redirection (IDE-R) and Serial-Over-LAN (SOL): boot
from a remote CD/HDD image to fix non-bootable or
infected OS, and control the PC console
Identity Protection: embedded one-time password (OTP)
token for two-factor authentication
Protected Transaction Display: secure PIN entry not
visible to the host software

8(c) 2014 Igor Skochinsky

Recap

Sources of information

Intel's whitepapers and other publications (e.g. patents)
Intel's official drivers and software

HECI/MEI driver, management services, utilities
AMT SDK, code samples
Linux drivers and supporting software; coreboot

BIOS updates for boards on Intel chipsets
Even though ME firmware is usually not updateable

using normal means, it's still very often included in
the BIOS image

Sometimes separate ME firmware updates are
available too

9(c) 2014 Igor Skochinsky

Recap

Sources of information
Intel's ME Firmware kits are not supposed to be distributed
to end users
However, many vendors still put up the whole package
 instead of just the drivers,
 or forget to disable the
 FTP listing

With a few picked keywords
you can find the good stuff :)

10(c) 2014 Igor Skochinsky

Recap: flash layout

The SPI flash is shared between BIOS,
ME and GbE
For security, BIOS (and OS) should not
have access to ME region
The chipset enforces this using
information in the Descriptor region
The Descriptor region must be at the
lowest address of the flash and contain
addresses and sizes of other regions,
as well as their mutual access
permissions

11(c) 2014 Igor Skochinsky

Recap: ME region layout

ME region itself is not monolithic
It consists of several partitions, and the table at the start
describes them

12(c) 2014 Igor Skochinsky

Recap: ME code partition

Code partitions have a header called "manifest"
It contains versioning info, number of code modules,
module header, and an RSA signature

13(c) 2014 Igor Skochinsky

Recap: ME code modules

Module name Description
BUP Bringup (hardware initialization/configuration)
KERNEL Scheduler, low-level APIs for other modules
POLICY Secondary init tasks, some high-level APIs
HOSTCOMM Handles high-level protocols over HECI/MEI
CLS Capability Licensing Service – enable/disable

features depending on SKU, SKU upgrades
TDT Theft Deterrence Technology (Intel Anti-Theft)
Pavp Protected Audio-Video Path
JOM Dynamic Application Loader (DAL) – used to

implement Identity Protection Technology (IPT)
fTPM Firmware TPM

Some common modules found in recent firmwares

14(c) 2014 Igor Skochinsky

Recap: ME core evolution

It seems there have been three generations of the
microcontroller core so far, and corresponding changes in
firmware layout

My investigations cover mostly Gen 2 firmware

ME Gen 1 ME Gen 2 SEC/TXE
ME versions 1.x-5.x 6.x-10.x 1.x (Bay Trail)
Core ARCTangent-A4 ARC 600(?) SPARC
Instruction set ARC (32-bit) ARCompact (32/16) SPARC V8(?)
Manifest tag $MAN $MN2 $MN2
Module header tag $MOD $MME $MME
Code compression None, LZMA None, LZMA, Huffman None, LZMA

15(c) 2014 Igor Skochinsky

Recap: Security

ME includes numerous security features
Code signing: all code that is supposed to be running on the
ME is signed with RSA and is checked by the boot ROM

“During the design phase, a Firmware Signing Key (FWSK) public/private pair is
generated at a secure Intel Location, using the Intel Code Signing System. The
Private FWSK is stored securely and confidentially by Intel. Intel AMT ROM
includes a SHA-1 Hash of the public key, based on RSA, 2048 bit modulus
fixed. Each approved production firmware image is digitally signed by Intel with
the private FWSK. The public FWSK and the digital signature are appended to
the firmware image manifest.

At runtime, a secure boot sequence is accomplished by means of the boot ROM
verifying that the public FWSK on Flash is valid, based on the hash value in
ROM. The ROM validates the firmware image that corresponds to the manifest’s
digital signature through the use of the public FWSK, and if successful, the
system continues to boot from Flash code.”

From "Architecture Guide: Intel® Active Management Technology", 2009

16(c) 2014 Igor Skochinsky

Recap: Unified Memory Architecture (UMA) region

ME requires some DRAM to put unpacked code and
runtime variables (MCU's own memory is too limited and
slow)
This memory is reserved by BIOS on ME's request and
cannot be accessed by the host CPU once locked.

A memory remapping attack was demonstrated by
Invisible Things Lab in 2009, but it doesn't work on newer
chipsets
Cold boot attack might be possible, though...

17(c) 2014 Igor Skochinsky

Recap: results and issues (as of 2012)

Figured out the basic layout of the firmware and the code
modules
Wrote some scripts to parse it
Learned how to modify hidden BIOS settings
Added ARC support to IDA
Started disassembling different modules

Issues:
Missing code – jumps to nowhere
Some modules are huffman compressed – could not
decompress
UMA code (supposedly decompressed) is inaccessible

18(c) 2014 Igor Skochinsky

New discoveries

19(c) 2014 Igor Skochinsky

Intel FSP

Intel Firmware Support Package; first release was in 2013
Low-level initialization code from Intel for firmware writers
Freely downloadable from Intel's site
The package for HM76/QM77 included* ME firmware, tools
and documentation

http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview

Documentation still contained
"confidential" markings :)

*Intel took it down and replaced with a
generic package, without the secret ME bits :(

http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview

20(c) 2014 Igor Skochinsky

ME: the missing code mystery

To save flash space, various common routines are stored
in the on-chip ROM and are not present in the on-flash
firmware
They are used in the firmware
modules by jumping to
hardcoded addresses
This complicated reverse-
engineering somewhat
because a lot of code is missing
I could guess what some of the functions do, but there
were a lot of them
However, one of the ME images I found contained a new
partition I haven't seen before, named "ROMB"...

ld r0, =_sbss?
ld r2, =_ebss?
mov r1, 0
sub r2, r2, r0
bl 0x205139E4 # memset??
(address 0x205139E4 is not
 present in the binary)

21(c) 2014 Igor Skochinsky

ME: ROM Bypass

Apparently, the pre-release hardware allows to override
the on-chip ROM and boot using code in flash instead
This is used to work around bugs in early silicon

22(c) 2014 Igor Skochinsky

ME: ROM Bypass

If this option is on, the first instruction of the ME region is
executed instead of the boot ROM
It jumps to the code in ROMB partition

23(c) 2014 Igor Skochinsky

ME: ROM Bypass

By looking at the code in the ROMB region, the inner
workings of the boot ROM were discovered
The boot ROM exposes for other modules:

common C functions (memcpy, memset, strcpy etc.)
ThreadX RTOS routines
Low-level hardware access APIs

It does basic hardware init
It verifies signature of the FTPR partition, loads the BUP
module and jumps to it
Unfortunately, BUP and KERNEL employ Huffman
compression with unknown dictionary, so their code is not
available for analysis :(

24(c) 2014 Igor Skochinsky

Attacking the ME

25(c) 2014 Igor Skochinsky

ME: attacking UMA

I decided to try and dump the UMA region since it
contains unpacked Huffman code and runtime data
Idea #1: simply disable the code which sets the MESEG
lock bit in the BIOS
[some time spent reversing memory init routines...]
Patched out the code which sets the lock bit
Updated necessary checksums in the UEFI volume
Reflashed the firmware and rebooted
Result: bricked board
Good thing I had a spare board and could restore the old
firmware using hotswap flashing...

26(c) 2014 Igor Skochinsky

ME: attacking UMA

Idea #2: cold boot attack
Quickly swap the DRAM sticks so that UMA content
remains in memory

Unfortunately, dumped memory contains only garbage...

First Boot: Let ME
unpack code into UMA

Second boot: after swapping,
Old UMA should be accessible

27(c) 2014 Igor Skochinsky

ME: attacking UMA

Tried lower-speed memory – did not help
Bought professional grade freezing spray – did not help
Eventually discovered that DDR3 used in my board can
employ memory scrambling

“The memory controller incorporates a DDR3 Data
Scrambling feature to minimize the impact of excessive di/dt
on the platform DDR3 VRs due to successive 1s and 0s on
the data bus. [...] As a result the memory controller uses a
data scrambling feature to create pseudo-random patterns on
the DDR3 data bus to reduce the impact of any excessive
di/dt.”

(from Intel Corporation Desktop 3rd Generation Intel® Core™ Processor
Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel®
Celeron® Processor Family Datasheet)

28(c) 2014 Igor Skochinsky

ME: attacking UMA

Idea #3: use different UMA sizes across boots
The required UMA size is a field in the $FPT header
The FPT is protected only by checksum – not signature –
so it's easy to change

29(c) 2014 Igor Skochinsky

ME: attacking UMA

Flash FPT that requests 32MB, reboot. BIOS will reserve top 32MB
but ME will use only half of the region

Flash FPT that requests 16MB, reboot. BIOS will reserve top 16MB,
so the previously used 16MB will be accessible again

Unfortunately got garbage again :(It seems that memory
is reinitialized with different scrambling seed between the
boots.

 RAM UMA
16MB

Empty
16MB

 RAM Old
UMA

UMA
16MB

Not accessible by CPU

30(c) 2014 Igor Skochinsky

ME: attacking UMA

Idea #4: disable memory scrambling
Scrambling can be turned off using a BIOS setting on
some boards

On my board the option is hidden but it's possible to
change it by editing the UEFI variable "Setup" directly
However, it did not help – the memory is still garbage
Probably caused by aggressive memory training

31(c) 2014 Igor Skochinsky

ME: attacking UMA

Idea #5: ?
I still have some ideas to try but they require more time
and effort
So I tried other approaches
For example...

32(c) 2014 Igor Skochinsky

ME variations

33(c) 2014 Igor Skochinsky

Server Platform Services

On Intel's server boards, ME is present too
However, it runs a different kind of firmware
It's called Server Platform Services (SPS)
It has a reduced set of modules, however it does include
BUP and KERNEL
Good news #1: BUP module is not compressed!
KERNEL is Huffman "compressed", but...
Good news #2: all blocks use trivial compression (i.e. no
compression)
So I now could investigate how these two modules work
There are differences from desktop but it's a start

34(c) 2014 Igor Skochinsky

Trusted Execution Engine

In Bay Trail (Atom-based SoC), another variation of ME is
used
Marketing name: Trusted Execution Engine (TXE);
codename: SEC/SeC

Note: not related to Trusted Execution Technology (TXT)
Instead of ARC, uses SPARC core(!)
No Huffman compression, only LZMA(!!)
So, all code (except Boot ROM) is available for analysis
The available KERNEL code can help recovering APIs for
ARC firmwares too
SPARC emulators are available so the code can be
emulated/fuzzed/debugged

35(c) 2014 Igor Skochinsky

Trusted Execution Engine

Here's what I've discovered so far
The firmware format is the same, just with larger module
headers
ThreadX doesn't seem to be used anymore; all RTOS
functionality (threads, semaphores etc.) is implemented
directly inside KERNEL
However, other common routines from boot ROM are still
used
Because most of the other modules used KERNEL wrappers
for RTOS stuff, they haven't changed substantially
Module set is reduced compared to desktop ME (e.g.
network-related modules are missing)
fTPM module implements TMP 2.0

36(c) 2014 Igor Skochinsky

Dynamic Application Loader

37(c) 2014 Igor Skochinsky

JOM aka DAL

The "JOM" module appeared in ME 7.1
It implements what Intel calls "Dynamic Application Loader"
(DAL)
It allows to upload and run applications (applets) inside ME
dynamically (i.e. at runtime)
This feature is used to implement Intel's Identity Protection
Technology (Intel IPT)
In theory, it allows a much easier way for running custom
code on the ME
Let's have a look at how it's implemented...

38(c) 2014 Igor Skochinsky

JOM aka DAL

Some interesting strings from the binary:

Looks like Java!

Could not allocate an instance of
java.lang.OutOfMemoryError
linkerInternalCheckFile: JEFF format version not
supported
com.intel.crypto
com.trustedlogic.isdi
Starting VM Server...

39(c) 2014 Igor Skochinsky

JOM aka DAL

Apparently it includes a Java VM implementation
In Intel ME drivers, there is a file "oath.dalp" with a Base64
blob
After decoding, a familiar manifest header appears
It has a slightly different module header format, and a single
module named "Medal App"
The module contains a chunk with signature "JEFF", which
is mentioned in the strings of the JOM module
Strings in this JEFF chunk also point to it being Java code
However, the opcode values look different from normal Java
I was so sure it's a custom format, I spent quite a lot of time
reversing it from scratch

40(c) 2014 Igor Skochinsky

JOM aka DAL

However, I came across one string in the module...

There is no such instruction in standard Java. Let's try
Google...

.ascii "Invalid constant offset in the SLDC instruction"

41(c) 2014 Igor Skochinsky

JOM aka DAL

However, I came across one string in the module...

There is no such instruction in standard Java. Let's try
Google...

.ascii "Invalid constant offset in the SLDC instruction"

42(c) 2014 Igor Skochinsky

JEFF File Format

Turns out the JEFF format is a standard
Was proposed in 2001 by the now-defunct J Consortium
Has been adopted as an ISO standard (ISO/IEC 20970)
Draft specification is still available in a few places
Optimized for embedded applications
Combines several classes in one file, in a form which is
ready for execution
Shared constant pool also reduces size
Introduces several new opcodes
Supports native methods defined by the implementation

43(c) 2014 Igor Skochinsky

JEFF File Format

I made a dumper/disassembler in Python based on the spec
Dumped code in oath.dalp and the internal JEFF in the
firmware
No obfuscation was used by Intel, which is nice
Most of the basic Java classes are implemented in bytecode,
with a few native helpers
There are classes for:

Cryptography
UI elements (dialogs, buttons, labels etc.)
Flash storage access
Implementing loadable applets

44(c) 2014 Igor Skochinsky

JEFF File Format

Fragment of a class implementation (without bytecode)
Class com.intel.util.IntelApplet
private:
 /* 0x0C */ boolean m_invokeCommandInProcess;
 /* 0x00 */ OutputBufferView m_outputBuffer;
 /* 0x0D */ boolean m_outputBufferTooSmall;
 /* 0x04 */ OutputValueView m_outputValue;
 /* 0x08 */ byte[] m_sessionId;
public:
 void <init>();
 final int getResponseBufferSize();
 final int getSessionId(byte[], int);
 final int getSessionIdLength();
 final String getUUID();
 final abstract int invokeCommand(int, byte[]);
 int onClose();
 final void onCloseSession();
 final int onCommand(int, CommandParameters);
 int onInit(byte[]);
 final int onOpenSession(CommandParameters);
 final void sendAsynchMessage(byte[], int, int);
 final void setResponse(byte[], int, int);
 final void setResponseCode(int);

45(c) 2014 Igor Skochinsky

IPT applets

The applet interface seems to be rather simple
The OATH applet implementation looks like this:

package com.intel.dal.ipt.framework;
public class AppletImpl extends com.intel.util.IntelApplet
{
 final int invokeCommand(int, byte[])
 {
 ...
 }
 int onClose()
 {
 ...
 }
 int onInit(byte[])
 {
 ...
 }
}

46(c) 2014 Igor Skochinsky

IPT applets

Unfortunately, even if I create my own applets, I can't run
them inside ME because...
Applet binaries have a signed manifest header and are
verified before running
Still, there may be vulnerabilities in the protocol, which is
pretty complicated

47(c) 2014 Igor Skochinsky

Trusted Execution Environment

From the strings inside JOM, it's apparent that Intel is using
a Trusted Execution Environment (TEE) provided by Trusted
Logic Mobility (now Trustonic), called "Trusted Foundations"

Source:
Trusted Foundations flyer

48(c) 2014 Igor Skochinsky

Trusted Execution Environment

Trusted Foundations is also used in several smartphones
Implemented there using ARM's TrustZone
Due to GPL, source code of drivers which communicate with
Trusted Foundations is made available
The protocol is not the same as what Intel uses
For example, TrustZone communications employ shared
memory, while ME/JOM only talks over HECI/MEI
Still, there are some common parts, so it helps in reverse
engineering

49(c) 2014 Igor Skochinsky

Trusted Execution Environment

There is a TEE specification released by the GlobalPlatform
association (Trusted Logic Mobililty/Trustonic is a member)
Describes overall architecture, client API and internal API
(for services running inside TEE)
Again, it does not exactly match what runs in the ME but is
still a useful reference

http://www.globalplatform.org/specificationsdevice.asp

http://www.globalplatform.org/specificationsdevice.asp

50(c) 2014 Igor Skochinsky

Demo (scripts/tools)

51(c) 2014 Igor Skochinsky

Results so far

I still have not managed to run my own rootkit on the ME
But I'm getting a more complete picture of how ME works
Other researchers started looking into it as well
The code of boot ROM, BUP and KERNEL modules has
been discovered
This allowed me to map out many APIs used in other
modules
ARC support was released with IDA 6.4 and improved in the
following versions
There was some interest so I will be releasing my scripts at
this Breakpoint
<URL to be determined>

52(c) 2014 Igor Skochinsky

Future work

Dynamic Application Loader
Make a JEFF to .class converter, or maybe a direct JEFF

decompiler
Reverse and document the host communication protocol
Linux IPT client?

EFFS parsing and modifying
Most of the ME state is stored there
If we can modify flash, we can modify EFFS
Critical variables are protected from tampering but the

majority isn't
Complicated format because of flash wear leveling

53(c) 2014 Igor Skochinsky

Future work

Huffman compression
Used in Gen2 firmwares for compressing the kernel and

some other modules
Apparently the dictionary is hardcoded in silicon
There was some progress with ME 6.x:

http://io.smashthestack.org:84/me/
Newer versions use a different dictionary :(

ME ↔ Host protocols
Most modules use different message formats
A lot of undocumented messages; some modules seem to

be not mentioned anywhere
Some of the client software has very verbose debugging

messages in their binaries...
Anti-Theft is probably a good target

http://io.smashthestack.org:84/me/

54(c) 2014 Igor Skochinsky

Future work

BIOS RE
In early boot stages ME accepts some messages which

are refused later
Reversing BIOS modules that talk to ME is a good source

of info
Some messages can be sent only during BIOS boot
UEFITool by Nikolaj Schlej helps in editing UEFI images

https://github.com/NikolajSchlej/UEFITool
Coreboot has support for ME on some boards

Simulation and fuzzing
Open Virtual Platform (www.ovpworld.org) has modules

for ARC600 and ARC700 (ARCompact-based)
Supposedly easy to extend to emulate custom hardware
Debugging and fuzzing should be possible

https://github.com/NikolajSchlej/UEFITool
http://www.ovpworld.org/

55(c) 2014 Igor Skochinsky

Future work: Atom SoCs?

56(c) 2014 Igor Skochinsky

Future work: Atom SoCs?

57(c) 2014 Igor Skochinsky

Future work: Atom SoCs?

Intel System-on-Chip (SoC) variants (Moorestown, Medfield,
Merrifield etc.), used in some phones and tablets
In addition to the x86 core(s), also include mysterious blocks
like "P-Unit" or "SCU"
Apparently those have their own firmware(!)
P-Unit seems to be an 8051 and SCU an ARC(!)
From a quick glance they don't seem to be extremely
hardened
Communicate with the CPU over "sideband fabric"(??)
The new Intel Edison has such a processor
The firmware images are available...
http://downloadmirror.intel.com/24271/eng/edison-image-ww36-14.zip

http://downloadmirror.intel.com/24271/eng/edison-image-ww36-14.zip

58(c) 2014 Igor Skochinsky

References and links

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/

http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/

http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html

https://noggin.intel.com/technology-journal/2008/124/intel®-vpro™-technology

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf

http://www.stewin.org/papers/dimvap15-stewin.pdf

http://www.stewin.org/techreports/pstewin_spring2011.pdf

http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf

http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt

http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c

http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf

http://me.bios.io/

http://www.uberwall.org/bin/download/download/102/lacon12_intel_amt.pdf

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
https://noggin.intel.com/technology-journal/2008/124/intel%C2%AE-vpro%E2%84%A2-technology
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf
http://me.bios.io/
http://www.uberwall.org/bin/download/download/102/lacon12_intel_amt.pdf

59(c) 2014 Igor Skochinsky

Thank you!

Questions?

igor@hex-rays.com
skochinsky@gmail.com

mailto:igor@hex-rays.com
mailto:skochinsky@gmail.com

